
Data Science and Management 3 (2021) 13–21
Contents lists available at ScienceDirect

Data Science and Management

journal homepage: www.keaipublishing.com/en/journals/data-science-and-management
Research article
Improving Google Flu Trends for COVID-19 estimates using Weibo posts

Shuhui Guo a, Fan Fang a, Tao Zhou b, Wei Zhang c, Qiang Guo d, Rui Zeng c,e,*,
Xiaohong Chen f,g,**, Jianguo Liu h,***, Xin Lu a,****

a College of Systems Engineering, National University of Defense Technology, Changsha, 410073, China
b Big Data Research Center, University of Electronic Science and Technology of China, Chengdu, 611713, China
c West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, 610041, China
d Research Center of Complex Systems Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
e MD Department of Cardiology, West China Hospital, Sichuan University, Chengdu, 610041, China
f School of Business, Central South University, Changsha, 410083, China
g Institute of Big Data and Internet Innovations, Hunan University of Technology and Business, Changsha, 410205, China
h Institute of Accounting and Finance, Shanghai University of Finance and Economics, Shanghai, 200433, China
A R T I C L E I N F O

Keywords:
COVID-19
Epidemic estimates
Weibo
Google flu trends
Genetic algorithm
* Corresponding author. West China Biomedical
** Corresponding author. School of Business, Cen
*** Corresponding author. Institute of Accounting
**** Corresponding author. College of Systems En

E-mail addresses: zengrui_0524@126.com (R. Ze

Publishing services by Elsev

https://doi.org/10.1016/j.dsm.2021.07.001
Received 7 June 2021; Received in revised form 30
Available online 15 July 2021
2666-7649/© 2021 Xi'an Jiaotong University. Publi
CC BY license (http://creativecommons.org/licenses/by/4.0/).
A B S T R A C T

While incomplete non-medical data has been integrated into prediction models for epidemics, the accuracy and
the generalizability of the data are difficult to guarantee. To comprehensively evaluate the ability and applica-
bility of using social media data to predict the development of COVID-19, a new confirmed case prediction al-
gorithm improving the Google Flu Trends algorithm is established, called Weibo COVID-19 Trends (WCT), based
on the post dataset generated by all users in Wuhan on Sina Weibo. A genetic algorithm is designed to select the
keyword set for filtering COVID-19 related posts. WCT can constantly outperform the highest average test score in
the training set between daily new confirmed case counts and the prediction results. It remains to produce the best
prediction results among other algorithms when the number of forecast days increases from one to eight days with
the highest correlation score from 0.98 (p < 0.01) to 0.86 (p < 0.01) during all analysis period. Additionally,
WCT effectively improves the Google Flu Trends algorithm's shortcoming of overestimating the epidemic peak
value. This study offers a highly adaptive approach for feature engineering of third-party data in epidemic pre-
diction, providing useful insights for the prediction of newly emerging infectious diseases at an early stage.
1. Introduction

Since the outbreak of COVID-19 (formally known as 2019-nCoV) in
December 2019 in Wuhan, Hubei Province, China (Shen et al., 2020), the
pandemic has become a major threat to the whole world. By May 30,
2021, the virus had affectedmore than 169million people and caused the
deaths of 3.5 million in more than 190 countries and regions worldwide
(JHU, 2021). Although many measures have been taken to cope with the
health emergency of national concern, such as social distancing
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measures, locking down measures, imposing quarantines, universities,
and business closures (Tison et al., 2020), monitoring the dynamics of the
epidemic and preventing its spread poses a huge challenge in practice
due to the limited capacity of conventional disease surveillance systems.
Studies have shown that publicly available data can play a crucial role in
tracking the spread of epidemic disease as complements for conventional
public health surveillance (Gundecha and Liu, 2012; Samaras et al.,
2020). Non-medical data generated from various sources (Aiello et al.,
2020; Kirian and Weintraub, 2010; Ram et al., 2015), has been widely
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used to estimate disease incidences and to detect disease outbreaks
before clinically confirmed data is available (Charles-Smith et al., 2015;
Dai et al., 2021; Lu et al., 2021). Social media data collected from
Facebook (Gittelman et al., 2015; Strekalova, 2016), YouTube (Basch
et al., 2015; Nerghes et al., 2018), Instagram (Guidry et al., 2017; Seltzer
et al., 2017), and Internet search queries (Ginsberg et al., 2009; Zhao
et al., 2018) are also used to predict diseases for public health concerns.
For example, Twitter data is widely used for early warning and outbreak
detection, such as to predict syphilis (Young et al., 2018), swine flu
(Kostkova et al., 2014), flu (Chen et al., 2014), and Ebola (Yom-Tov,
2015).

The representative work was made by the Google research and
development team, who developed the Google Flu Trends (GFT) algo-
rithm based on the high correlation between the number of certain
queries in the Google search platform and influenza-like activity level
(Ginsberg et al., 2009). They accurately estimated the level of influenza
activity in near-real time without knowing the development stage and
transmission mechanism of the disease. Since then, many researchers are
inspired to track epidemics with social media data (Araujo et al., 2017;
Huang et al., 2013; Signorini et al., 2011). As for the unprecedented
pandemic COVID-19, some researchers also applied social media and
Internet data to monitor and estimate the development of the epidemic
(Ayyoubzadeh et al., 2020; Li et al., 2020; Qin et al., 2020). However,
many of these studies used only sampled, incomplete data, so the
integrity of the dataset and the accuracy of the prediction models are
both difficult to guarantee, and there is still a lack of a general prediction
framework that can accurately predict the course of COVID-19 using
social media data.

To detect and predict the development of COVID-19 using publicly
available social media data, this paper applied the daily new confirmed
COVID-19 case counts in Wuhan reported by its Health Commission, and
a complete dataset of user posts from Sina Weibo (Weibo, 2020), the
Twitter-like microblog platform in China, to propose a new confirmed
case prediction algorithm named Weibo COVID-19 Trends (WCT) based
on the GFT algorithm. WCT can effectively predict the daily new
confirmed case counts before the official report is released. This paper
also provided a general prediction framework that can be easily extended
to predict other diseases or public emergencies using accessible
third-party data. This study provides a promising approach for fore-
casting newly emerging infectious diseases at an early stage when most
epidemiological characteristics are unknown. Table 1 shows the no-
menclatures used in each processing of this paper.

The main contributions of this paper are summarized as follows:

1. A new confirmed case prediction algorithm is developed based on
GFT to predict the development of COVID-19.

2. A genetic algorithm is designed to select a keyword set to filter Weibo
posts related to COVID-19.
Table 1
The nomenclatures used in this paper.

Term Meaning

GFT Google Flu Trends algorithm
WCT The proposed new confirmed case prediction algorithm named Weibo

COVID-19 Trends
GCA The greedy combination algorithm in GFT
LR Log-odds linear regression model in GFT
GA Genetic algorithm
LSTM Long Short-Term Memory regression model
R Pearson correlation score
KS Keyword set
MKS The most epidemic-relevant KS
N Size of KS
M Group size of KS in GA
MG The maximum iteration time in GA
D Duration of the training data
g Lag for prediction
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3. A highly adaptive framework for feature engineering which allows
third parties to utilize the data for epidemic predictions is proposed.

The rest of the paper is organized as follows. Section 2 reviews the
GFT algorithm and its updated versions. Section 3 mainly describes the
framework for the proposed COVID-19 prediction algorithm (i.e., WCT),
in which a genetic algorithm is implemented to improve related keyword
set selection. Section 4 presents the estimated results of WCT with a
comparison with other algorithms including GFT. Finally, Section 5
summarizes the findings and limitations of this study.

2. Literature review

2.1. The initial version of GFT

Google Flu Trends (GFT) is a short-term forecasting tool for weekly
influenza activity as an auxiliary method of influenza surveillance (CDC,
2020). It was launched in 2008 with satisfying forecast precision at that
time and was further applied to influenza surveillance and early warning
systems in many countries (Butler, 2013). Although Google had
improved the details of the algorithm many times in the process of GFT
application, due to the impact of a sudden increase in influenza-like
illness (ILI) related queries and other factors (Kandula and Shaman,
2019; Lazer et al., 2014b). The problem of inaccurate prediction of the
algorithm has never been solved completely. Finally, Google shut down
the GFT flu prediction function in 2015 (GFT, 2015).

The most well-known GFT algorithm is its initial version. With input
on the fraction of certain ILI-related search queries from Google and the
percentages of ILI physician visits from the US Centers for Disease Con-
trol and Prevention (CDC), the GFT algorithm trains a log-odds linear
regression model (LR) to estimate ILI incidence. LR uses the log-odds of
an ILI physician visit and the log-odds of an ILI-related search query to
realizes regression prediction:

logitðIðtÞÞ¼ αlogitðQðtÞÞ þ ε (1)

where logitðpÞ ¼ lnðp =ð1 � pÞÞ, IðtÞ is the percentage of ILI physician
visits, QðtÞ is the ILI-related query fraction at time t (i.e., the sum of each
query fraction in the selected ILI-related search queries set), α is the
multiplicative coefficient, and ε is the error term.

Firstly, the model is trained by each of the 50 million candidate
common queries separately. It outputs the prediction result of ILI
physician visits and the Pearson correlation score between the estimates
and the CDC ILI data. Then the aggregated top-scoring queries are used to
train the model and the best fit (when the number of keywords n ¼ 45) is
selected automatically. The selection of queries from the best fit is called
“the greedy combination algorithm” (GCA). Finally, the selected queries
are used to train the model and predict the ILI physician visits. This
approach has successfully estimated the level of weekly influenza activity
in the United States from 2007 to 2008 with a mean correlation score of
0.97 and 1–2 weeks ahead of the reports published by CDC. It offers the
opportunity to use search queries to detect influenza epidemics and in-
spires researchers to explore the application of social media data in
public health surveillance (Cui et al., 2015; Schmidt, 2012).
2.2. Updated versions and developments

Google officially launched GFT (GFT 1.0) in November 2008, and
subsequently gained a wide range of popularity. However, in the first
wave of influenza A (H1N1) epidemic, that is, from April to August 2009,
the predicted incidence of H1N1 was badly lower than the ILI activity
reported by CDC (Butler, 2013). Therefore, Google upgraded GFT for the
first time and developed the second version GFT 2.0 (Cook et al., 2011).

GFT 2.0 adjusted the number and category of selected search queries,
referring to the ILI monitoring data during the first wave of H1N1
epidemic (March 29 to September 13, 2009). It increased the search



Fig. 1. The statistical description of Sina Weibo dataset. (a) The number of daily posts, users, and posts per user. (b) The average number and standard deviation of
posts in the hour 0 to 23 during the statistic period. (c) The correlation between the number of posts and users.
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query terms and deleted search queries that were not directly related to
influenza, which significantly improved the performance of GFT 2.0.
Since its launch in September 2009, its prediction result had been very
similar to the ILI activity in the United States until 2012. In the influenza
epidemic season of 2012–2013, GFT 2.0 greatly overestimated the
influenza epidemic with almost twice the result of CDC monitoring
(Butler, 2013). This overestimation led to the second upgrade of GFT
(Copeland et al., 2013).

GFT 3.0 was officially launched in October 2013, it made two changes
based on GFT 2.0, that is, weakening the impact of abnormal media hot
spots and using elastic net to predict ILI (previously based on linear
regression). Compared with GFT 2.0, GFT 3.0 significantly reduced the
peak amount of its predicted ILI in the 2012–2013 flu season. However,
its predicted result was still slightly higher than that of CDC in the United
States, and in the 31 weeks after the implementation of GFT 3.0, the
prediction result was higher in 23 weeks (Lazer et al., 2014a).

The last upgrade of GFT took place in August 2014 (Lampos et al.,
2015). GFT 4.0 expanded the GFT 3.0 model by incorporating the queries
selected by the Elastic Net into a non-linear regression framework, based
on a composite Gaussian Process. It also injected the ILI activity data as
prior knowledge about the disease into the model. The bias of GFT pre-
diction was significantly reduced. GFT 4.0 was used until August 2015,
when Google shut down the GFT prediction service.

Because of the important role of ILI surveillance in public health,
many researchers are still committed to improving the predictive per-
formance of ILI. Such as correcting the limitations of the GFT algorithm
process, updating or adding the training data source of the prediction
15
model, and proposing new prediction algorithms based on GFT. Kandula
et al. proposed a corrected GFT algorithm, which uses the estimated
value of the original GFT algorithm as new data for training the ILI
prediction model, reducing the total prediction error by 44% (Kandula
and Shaman, 2019). This algorithm considers the problem that the ILI
data provided by CDC is not timely and incomplete when the GFT al-
gorithm is proposed. It uses complete ILI data and GFT estimates to train
the prediction model and replaces LR with an autoregressive integrated
moving average (ARIMA) model. The algorithm greatly improves the
prediction accuracy and proves the validity and practicability of the GFT
prediction results. Similarly, other studies (Dugas et al., 2013; Preis and
Moat, 2014; Santillana et al., 2015; Wagner et al., 2018) also found that
replacing LR with other non-linear regressionmodels and combining new
data sources, including search queries, social media, and traditional data
sources, into the prediction model can significantly improve the accuracy
of ILI prediction.

3. Data and method

3.1. Data description

Sina Weibo is a popular Chinese microblog platform with millions of
users voluntarily sharing their lives and thoughts (Weibo, 2020). The
considerable amount of post-data generated by so many users offers the
possibility of monitoring and predicting the development of emerging
infectious diseases. In this study, all posts made byWeibo users in Wuhan
from December 1, 2019, to March 20, 2020, were collected. The dataset



Fig. 2. The basic algorithm flow of WCT and GFT.

Fig. 4. Evolution of the relative frequency of five most related keywords and the
daily case counts.
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spans 111 days and contains the period before the COVID-19 outbreak
and its evolution. The dataset contains 38,182,972 posts published
publicly by 2,239,450 unique users. Each record of post data contains the
post's content, type (whether the post was original or forwarded), time,
user nickname, and corresponding encryption ID. If the post was for-
warded, the post data contained the original post content (otherwise, it
was blank), original time posted, original user nickname, and ID. During
the data collection period, the mean number of daily unique users was
over 117,000, and they generatedmore than 343,000 posts every day. On
average, each user generated 2.9 posts per day.

Fig. 1a summarizes the series of daily quantity of statistical indicators.
The number of posts fluctuated greatly, with a peak of 486,073 posts on
March 1, 2020, and the fewest posts (119,886) occurring on December
29, 2019. The number of unique daily users and posts per user remains
relatively stable around 117 million and 2.93, respectively. Fig. 1b shows
the number of posts from hour 0 to hour 23 of each day. It is obvious that
the number of posts decreases first and then increases from hour 0 to
hour 23. The minimum value appears at about hour 5, with an average of
2,085 posts, and the maximum value appears near hour 22, with an
Fig. 3. The MKS selection and case count prediction algorithm processes. (a) MKS selection using GA. (b) The prediction process.
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average of 25,395 posts. The number of posts is highly correlated with
the number of daily active users (see Fig. 1c), and the Pearson correlation
score is 0.89 (p < 0.01).

3.2. The framework of weibo COVID-19 trends (WCT)

Inspired by the high correlation score between the relative frequency of
the certain keyword in Weibo posts and daily new confirmed case counts
of COVID-19 (see Fig. 4a in Section 4), a new confirmed case prediction
algorithm named Weibo COVID-19 Trends (WCT) based on GFT is pro-
posed. The basic algorithm process of WCT and its comparison with GFT
are shown in Fig. 2. Both of the two algorithms are trying to train a
regression model to predict the case counts in which the evaluation indi-
cator is the Pearson correlation score (R) between the prediction results
and the real case counts. In WCT, GCA is replaced by the genetic algorithm
(GA) (Mitchell, 1998) when selecting the keyword set for the best fit of the
prediction model. After comparing the performance of different prediction
models, the LR model in GFT is selected as the prediction model in WCT.

3.3. GA for keyword set selection

A prior list of 41 keywords (see Appendix Table A) is compiled firstly
to select all posts that contain COVID-19 information, including the
pneumonialike epidemic's medical terminology, symptom, and epidemic
control measures and organizations. There are 4,761,010 related posts
from a total of 38,182, 972 posts from all users (12.47%). Next, the
keywords from each post related to the pneumonia-like epidemic were
extracted, and a list of 118,572 most commonly used keywords (see
Appendix Table B) were produced. The most frequent 2,000 keywords
were chosen based on the absolute frequency for the next analysis. The
“absolute frequency” of a keyword is the total number of posts containing
that keyword since the beginning of the statistical period. Next, the time
series of the relative frequency of each commonly used keyword was
obtained. The “relative frequency” of a keyword on a certain day refers to
the number of all posts containing the keyword on that day divided by
the number of unique users on that day.

The relative frequency of a keyword set (KS), i.e., the sum of the
relative frequency of each keyword in the selected KS, was used to train
the case counts prediction model and then predict the development of the
epidemic. The purpose of KS combination and selection is to find the
most epidemic relevant keyword set (MKS) from the list of most
commonly used keywords in Weibo posts. This paper is aimed to design a
selection algorithm to seek the MKS which could obtain the highest R
between the prediction results and the real case counts. Viewing the
composition of a KS as analogous to an arrangement of chromosomes, GA
is used to select the MKS. The fitness function of GA is to maximize R
between the prediction results, yielded from the prediction model, and
the real case counts. The process of GA is presented as follows:

Step 1 KS initialization. The initial KS group is formed byM KSs, with
each KS containingN keywords. Each KS is scored according to the fitness
function to maximize R.

Step 2 KS update. The new KS is formed through crossover, mutation,
and combination of keywords in KS. Each iteration of the algorithm will
choose M better KSs based on R for the next generation and the iteration
repeats.

Step 3 Stop criteria.When the maximum iteration timeMG is reached
or R is high enough, the algorithm will stop and the program will output
the MKS.

The flow chart of GA is shown in Fig. 3a. In the implementation
process, parameters were set as M ¼ 25 and MG ¼ 100. Then the respect
MKS was obtained with N varying from 1 to 50 while fixing the length of
MKS (N ¼ 1 to 50), separately. To avoid over-fitting, the training period
was set as from December 1, 2019, to January 29, 2020, and the test
period was set from January 29, 2020, to February 22, 2020. To evaluate
the advantages of GA, the MKS obtained by GCA in GFT was also
analyzed. The detailedMKS selection results are presented in Section 4.2.
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3.4. LR for predicting the number of new confirmed cases

In this section, LR model was applied to predict the number of new
confirmed cases using the relative frequency of MKS obtained by GA and
a historical case count sequence. The analysis period covers the complete
development stage of COVID-19 in Wuhan except February 12 and 13,
2020, due to a change in the criteria for counting diagnoses of the virus.
During that period, the number of new confirmed cases increased
abnormally. The starting and ending times of the training set and the
predicting set are December 1, 2019, to February 21, 2020, and from
February 22, 2020, to March 20, 2020, respectively. The case counts
series were manually smoothed with a 3-day window length and then
used as input data for prediction.

There are also two parameters in the fitting process, the duration (D)
of the training data and the lag (g) for prediction. For example, a pre-
diction model trained with D ¼ 6, g ¼ 1 is shown in Fig. 3b. In this study,
D ¼ 3 was set to ensure adequate training data in the training process,
and g ¼ 1 was set to predict the next day's case counts using all infor-
mation up to date. All training processes apply three-fold cross validation
to reduce overfitting. The training and predicting processes are intro-
duced as follows.

Training process

Modeltrained ¼FITmðCt;Ct�g;Ct�g�1; :::;Ct�g�Dþ1;Pt�g;Pt�g�1; :::;Pt�g�Dþ1Þ
(2)

where Modeltrained is the trained model, Ct and Pt are the case count and
number of relative frequency of MKS at time t during the training period,
FITm is the fitting process by inputting training data {Ct ;Ct�g ;Ct�g�1; :::;

Ct�g�Dþ1;Pt�g ;Pt�g�1; :::;Pt�g�Dþ1} to train Modeltrained. The length of the
training window is D and the dimensions of training data is 2Dþ 1. The
whole training set is {Ct ;Ct�g ;Ct�g�1;:::;Ct�g�Dþ1;Pt�g ;Pt�g�1;:::;Pt�g�Dþ1}
(t increases from 1).

Predicting process

Ct ¼ModeltrainedðCt�g�1;Ct�g�2; :::;Ct�g�Dþ1;Pt�g�1;Pt�g�2; :::;Pt�g�Dþ1Þ (3)

where Ct is the case count at time t during the predicting period. His-
torical data is input as {Ct�g�1; Ct�g�2; :::; Ct�g�Dþ1; Pt�g�1; Pt�g�2; :::;

Pt�g�Dþ1} into the trainedmodelModeltrained. Then the prediction result of
the case count at time t is output. The length of the predicting window is
D and the dimensions of predicting data is 2D. The whole predicting set is
{Ct�g�1;Ct�g�2; :::;Ct�g�Dþ1;Pt�g�1;Pt�g�2; :::;Pt�g�Dþ1} (t increases from
1).

Previous research has demonstrated that non-linear regression
models, such as the Gaussian Processes, Long Short-Term Memory
(LSTM), and so on, can achieve great performance in COVID-19 tracking
and prediction (Alakus and Turkoglu, 2020; Lampos et al., 2021). The
performance of LSTM model was also calculated to be compared with LR
model. A 4-layer LSTM model was designed with a dropout rate of 0.15.
The loss function was mean square error (MSE) and the optimizer was
Adam. The number of training epoch ¼ 100 and batch size ¼ 10. The
detailed estimated results are provided in Section 4.3.

4. Results

4.1. Overview of COVID-19 related keywords and case counts

To investigate the relationship between the frequency of COVID-19
related keywords and the number of new confirmed cases per day, the
temporal evolution of the keywords with the number of new confirmed
COVID-19 cases in Wuhan was analyzed in this section. The direct cor-
relation Pearson score R between the relative frequency of the top 2000
commonly used keywords in Weibo posts and the number of new
confirmed cases each day during the whole statistical period was calcu-
lated. Most of the correlated keywords are related to the treatment of



Table 2
The keyword combination and performance of MKS selected by four algorithms.

Algorithm MKS Length R

GCA&LR [‘express’, ‘Wuhan’, ‘we’, ‘pneumonia’, ‘thanks’,
‘Zuoyi’ (emoji: folded hands), ‘virus’, ‘health
commission’, ‘New Year's Eve Dinner’, ‘traditional
Chinese medicine’, ‘father’, ‘Yang Zi’ (Chinese
star), ‘Zhang Wenhong’ (Doctor name), ‘the Red
Cross’, ‘test kit’, ‘Boxiao’ (Chinese stars: Xiao Zhan
and Wang Yibo), ‘##’ (symbol of Weibo topic),
‘SARS’, ‘Super Topic’ (Weibo super topics), ‘Li
Lanjuan’ (Doctor name), ‘mask’, ‘coronavirus’,
‘video’, ‘suspected case’, ‘forward’, ‘Zhang Yixing’
(Chinese star), ‘you’, ‘the Red Cross’, ‘the old
people’, ‘Friend Circle’ (Wechat moments),
‘investigation’, ‘hahaha’ (laugh), ‘husky’ (emoji:
husky head), ‘admission’, ‘hard work’]

35 0.62

GCA&LSTM [‘they’, ‘Hua Chenyu’ (Chinese star), ‘traditional
Chinese medicine’, ‘Zhao Lei’ (personal name),
‘12’, ‘video’, ‘nurse’, ‘test kit’, ‘Zhang Yixing’
(Chinese star), ‘14’, ‘forward’, ‘ahh’ (interjection),
‘protective clothing’, ‘report’, ‘resume work’, ‘… ‘,
‘baby’, ‘medical staff’, ‘17’, ‘takeaway’,
‘prevention and control’, ‘Iran’, ‘dad’, ‘doctor’,
‘Shenshan’, ‘crying while laughing’ (emoji: face
with tears of joy), ‘CT’, ‘confirmed’, ‘N95’, ‘Han
Hong’ (Chinese star), ‘husky’ (emoji: husky head),
‘notice’, ‘Wuhan Union Medical College Hospital’,
‘Jiang'an District’ (a district of Wuhan), ‘real’,
‘Yang Yang’ (Chinese star), ‘9958’ (homophony of
‘help me’)]

37 0.50

GA&LR [‘Yang Yang’ (Chinese star), ‘Li Xian’ (Chinese
star), ‘Han Hong’ (Chinese star), ‘CT’, ‘protective
clothing’, ‘anti-epidemic’, ‘Wuhan City’, ‘Iran’,
‘pickup’, ‘salute’, ‘Baibuting’ (a community of
Wuhan), ‘Han Hong’ (Chinese star), ‘Iran’, ‘Iran’,
‘Wuhan’, ‘Iran’, ‘Wuhan’, ‘hospital beds’, ‘Wang
Junkai’ (Chinese star), ‘hospital beds’, ‘protective
clothing’, ‘the Red Cross’, ‘hospitalization’, ‘027’
(the area code of Wuhan), ‘admission’,
‘community’, ‘father’, ‘hospital beds’, ‘testing’,
‘Huanggang City’, ‘Wuhan’, ‘Iran’, ‘ahh’
(interjection), ‘Huanggang City’, ‘testing’, ‘Wuhan
City’, ‘Xiao Zhan’ (Chinese star), ‘12’, ‘admission’,
‘Wuhan City’, ‘confession’, ‘Jiang'an District’ (a
district of Wuhan), ‘Huanggang’, ‘nucleic acid’]

44 0.66

GA&LSTM [’17’, ‘isolation’, ‘U.S.‘, ‘mask’, ‘vaccine’, ‘satellite
TV’, ‘materials’, ‘express’, ‘Korea’, ‘Zhu Yilong’
(Chinese star), ‘they’, ‘Wuhan’, ‘wild animals’,
‘24’, ‘2020’, ‘novel coronavirus’, ‘testing kit’, ‘the
Red Cross’, ‘CCTV’, ‘testing kit’, ‘SARS’,
‘disappointment’, ‘hospitalization’, ‘2020’, ‘Yang
Yang’ (Chinese star)]

25 0.62
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COVID-19 (‘hospitalization’, ‘physical examination’, ‘patient’, and so
on), and a few are used to describe symptoms or conditions (such as
‘breathing difficulties’, ‘cough’). The most correlated keywords are
‘hospital beds’ (R ¼ 0.84, p < 0.01) and ‘Shu Hongbing’ (R ¼ 0.78, p <
0.01). Shu Hongbing is the vice president of Wuhan University and
husband of the director of the Wuhan Institute of Virology. The latter was
involved in a massive discussion and criticism that it stated that the
Chinese herbal remedy Shuanghuanglian can suppress COVID-19. The R
value, as well as the absolute frequency of the top tenmost correlated and
uncorrelated keywords, are listed in Appendix Table C.

The evolution of the number of confirmed cases of COVID-19 and the
relative frequency of the five most relevant keywords are shown in Fig. 4.
It can be seen that the relative frequency of each keyword is very similar
to the trend of the number of new confirmed cases, supporting the
motivation of tracking COVID-19 with Weibo data. In contrast, the 10
keywords with the weakest correlation (‘article’, ‘new product’, ‘##‘,
‘grandpa Li’, ‘concert’, ‘Trump’, ‘19’, ‘Hubei Economy TV’, ‘2019’) were
also analyzed. These keywords with low correlation scores have little to
do with the symptoms or treatment of COVID-19.
18
4.2. The R value of the selected MKS

GA and GCA algorithm were both used to select MKS. By setting the
length of MKS (N) to vary from 1 to 50 and applying LR and LSTM pre-
diction model (D ¼ 3, g ¼ 1) into GA and GCA algorithm, the changes in
the indicator R between the prediction results and the real case counts
were compared to evaluate the performance of the MKS selection algo-
rithm. Each prediction model adopted three-fold cross validation and
then output the average test scores of the training set as R.

The MKSs (1� N� 50) with the highest R selected by each algorithm
are presented in Table 2. The original Chinese text for keywords in each
MKS are provided in Appendix Table D. Most keywords in MKS obtained
by GA or GCA algorithm are medical terms directly related to COVID-19
(such as ‘virus’, ‘isolation’, ‘CT’, ‘coronavirus’). It also contains keywords
which are not directly related to COVID-19, such as numbers (‘14’, ‘17’)
and personal pronouns (‘you’). GA has the feature of retaining the most
relevant keywords and automatically outputting MKS with the best
performance. The keywords in MKS can be repeated if duplication can
make the MKS perform better. It can be found that there are some
duplicated keywords in the MKS of GA-related algorithms (see Table 2).
This is because the KS with duplicated keywords performs best in the
iteration process of GA and becomes MKS. Judging from the correlation
between the relative frequency of MKS and the daily case count of
COVID-19, the performance of GA and GCA is close, but from the R value
of the MKS obtained by the two algorithms, GA is better than GCA. The
highest test score is obtained by the GA&LR algorithm (WCT) with R ¼
0.66 (p< 0.01), which is higher than the test score of GFT (i.e., GCA&LR)
of R ¼ 0.62 (p < 0.01).

In the four combination algorithms, GA&LR (WCT) has the best
performance with the average test score R ¼ 0.65 (p < 0.01), while the
average test score of GCA&LSTM is the smallest at R ¼ 0.43 (p < 0.01).
The variation of R for MKS with different N is shown in Fig. 5a. Notably,
GA-based predictions are much more stable than GCA. For GA&LR and
GA&LSTM, the correlation scores vary in a very limited range, 0.60 to
0.66 and 0.55 to 0.62, respectively. However, for GCA-based predictions,
the correlation scores experienced unexpected large variations. With
GCA&LSTM generating the poorest prediction results, the correlation
score of GCA&LR can drop to 0.21 when N ¼ 50. In a word, the MKS
filtered by GA in terms of predicting daily new confirmed cases is with
high agreements to the real data.

In addition, the performances of MKSs filtered by GA and GCA (N
from 1 to 50) were compared when the fitness function was to maximize
the direct R between the relative frequency of the MKS and daily new
confirmed case counts. The experimental results further evidenced the
superiority of GA in selecting more relevant keyword sets, and it is not
sensitive to the length of keywords N (see Figure D8 in Appendix).

4.3. The prediction performance of WCT

In this section, the relative frequency of the selected MKS and daily
new confirmed case counts were applied to train prediction models and
predict the case counts in the whole analysis period with D¼ 3, g¼ 1. For
each prediction result, R values between the prediction results and the
real case counts in the whole analysis period, the training set, and the
predicting set, were calculated as the indicators of performance. Note
that different from the three-fold cross validation technique used in the
previous analysis, the whole data in the training set were used to
construct all models in this section.

The MKSs with the highest R selected by GA and GCA were used to
train the LR and LSTM model, where the lengths of MKS in GCA&LR,
GCA&LSTM, GA&LR, and GA&LSTM are N ¼ 35, 37, 44 and 25,
respectively (see Table 2). The prediction results show that WCT
(referred to GA&LR in Fig. 5b) has a higher prediction accuracy than GFT
(referred to GCA&LR in Fig. 5b). The performance of WCT is R ¼ 0.97 (p
< 0.01) during the whole analysis period, all of which are the best
among contrast models. While the performance of GFT is R ¼ 0.96 (p <



Fig. 5. The MKS and prediction performances. (a) The variation in R of MKSs. (b) The performances of four algorithms.

Fig. 6. The daily new confirmed case counts estimates by four algorithms. (a) The estimates by LR-based model. (b) The estimates by LSTM-based model.

S. Guo et al. Data Science and Management 3 (2021) 13–21
0.01). The performance in training set (R ¼ 0.98 (p < 0.01)) and pre-
dicting set (R¼ 0.87 (p< 0.01)) of WCT are also the best among the four
algorithms.

Compared with GFT, which excessively estimated the daily new
confirmed cases during the outbreak period (February 4 to February 5,
2020) over 6–8%, WCT breaks through this limitation and the prediction
error is constrained with less than 100 cases (0–3%) (Fig. 6a). The
combination of GA and LR effectively overcomes the GFT's shortcoming
of over-estimating the epidemic peak value. Besides, in either the
training or testing process, WCT constantly outperforms the other algo-
rithms. In contrast, the LSTM model does not perform well in this special
task. In both GA&LSTM or GCA&LSTM, the peak number of cases was
underestimated by 80% maximumly, and in the late stage of the
epidemic, LSTM models overestimated the number of new cases by
10–60% from March 1 to March 22, 2020.

4.4. Sensitivity analysis of WCT

In this section, the performances of the WCT algorithm under
different parameter combinations were tested to evaluate the effect of
duration of the training data (D) as well as the lag for prediction (g). The
parameter D is set to change from 1 to 7, implying that the length of the
19
training window increased from one day to a week before the days to be
predicted. The parameter g is set to change from 1 to 15, implying that
the algorithm attempts to predict the number of daily new confirmed
cases on the gth day in the future. The length of MKSwhen it produces the
best performance in the three-fold cross validation for each algorithm is
used in this analysis (see Table 2). Fig. 7 shows the performance of the
four algorithms.

The four algorithms all show robustness to the parameter D, especially
when g is set in the range of 1–3. When the number of days of historical
data used for prediction (D) increases from 1 to 7, the performances of the
four algorithms are rather robust, in comparison to the large variation of R
in terms of the lag parameter g. Overall, there is a weak tendency of
increased performance with larger D, i.e., the prediction model works
better when more historical data is included in the training process. When
g is small for more recent predictions, theWCTmodel continues to produce
the best result given D is in the range of 2–5. For example, when the al-
gorithm extends the prediction from the next day (g¼ 1) to the second day
(g¼ 2) with D¼ 3, the performance of WCT reaches R¼ 0.97 to R¼ 0.96,
while the R values of GFT are only 0.96 and 0.93, respectively. When g
increases from 10 to 12 with a week's historical data being trained (D¼ 7),
the R value of WCT varies in the range of 0.71 to 0.59. On the other hand,
GFT only has the R value of 0.59 to 0.51.



Fig. 7. The prediction performance of the four algorithms with combinations of D and g.
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The four algorithms all show sensitivity to the parameter g. As the
number of days to predict cases in advance increases, it becomes more
difficult for the model to predict the future based on existing data.
Compared to the GCA-based algorithms (GFT and GCA&LSTM), GA-based
algorithms (WCT and GA&LSTM) show less sensitivity to changes in the g
parameter. For example, WCT can still has a great performance asR¼ 0.88
(D ¼ 6) when g ¼ 7, while the maximum R of GFT is only 0.78 (D ¼ 7).

From the comparison of the prediction effect based on the LR model
and the LSTM model, the LSTM model is less sensitive to the g parameter
and can still maintain a good performance when g increases. WCT re-
mains to produce the best prediction results among other algorithms
when the number of forecast days increases from one to eight days with
the highest correlation score from 0.98 (p < 0.01) to 0.86 (p < 0.01).
However when g increases to 15, GA&LSTM model can maintain high R
as 0.67 (D ¼ 7), while WCT is R ¼ 0.49, D ¼ 7.

Some studies have applied social media dataset to predict new
confirmed cases of COVID-19. Qin et al. (2020) used the Baidu search
index to predict new confirmed case counts with the performance of R ¼
0.99 for g ¼ 1. However, this model is of limited practical value as it was
not tested for longer term predictions, on the other hand, the WCT can
predict case counts in 1–8 days’ future with a high R¼ 0.86-0.98. Lampos
et al. designed an unsupervised prediction model using Google Trends
data, which can predict newly confirmed case counts with R¼ 0.83-0.85,
ahead of official reports in more than 16 days (Lampos et al., 2021).
However, this model relies on manual construction of keyword set of
Google Trends, which is highly subjective. While WCT utilizes GA to
select MKS automatically and heuristically, with little human interven-
tion in the MKS selection process. Ayyoubzadeh et al. (2020) also used
Google Trends data to predict newly confirmed case counts in Iran.
Comparing linear model and LSTM model, they found that the perfor-
mance of linear model is better than the LSTMmodel, which is consistent
with the conclusion of this study.
20
From the above comparison results of sensitivity analysis, it is clear
that the WCT method exhibits relatively stronger robustness to the pa-
rameters D and g. It produces the highest correlation scores with short
future predictions and can maintain relatively more stable performance
for longer future estimates.

5. Conclusion and discussion

In this study, an algorithm called WCT is proposed to predict new
confirmed cases of COVID-19. Inputting the number of historical case
counts and a comprehensive dataset of Sina Weibo posts by Wuhan users,
the number of daily new confirmed cases can be accurately predicted by
WCT.

This paper applied a genetic algorithm to automatically construct the
keyword set and it can consistently outperform the maximum average
test score in the training set, higher than that obtained by GCA (0.66 vs.
0.62). The genetic algorithm is more relevant and more stable than GCA
in terms of the Pearson correlation score between the prediction results
and the real case counts.

The relative frequency of related posts filtered by the selected
keyword set is then applied to the LR algorithm and obtained the esti-
mates with a high correlation score of 0.97 (p < 0.01) in the whole
analysis period one day ahead of the official reports. WCT can accurately
predict the development of COVID-19 using only the historical number of
cases combined with Weibo post data. Compared with GFT, WCT over-
comes the GFT's shortcoming of over-estimating the epidemic peak value.

However, since the development of public emergencies on social
media is dynamic, one limitation of the WCT model is that it may need to
continuously update the keyword set for future situations with the
development of public emergencies, to ensure accurate prediction in the
later stage of epidemic or other public emergencies, which makes the
application of the method challenging. Compared with the prediction
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results of the classical GFT model, considering the influence of noise and
other factors, the prediction accuracy of the WCT model in short-term
estimates needs to be further improved.

This study offers a promising approach of using Sina Weibo data or
other social media data to realize syndromic surveillance-based disease
prediction and to increase global awareness of events. It provides a
process for mining epidemic development trends from large-scale social
media data without too many manual parameters. In the future, the use
of WCT can be extended to monitor and track other diseases or public
emergencies by inputting social media data.
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